Back to Search Start Over

An Existence Theorem for Group Divisible Designs of Large Order

Authors :
Mohácsy, Hedvig
Ray-Chaudhuri, D. K.
Source :
Journal of Combinatorial Theory - Series A. Apr2002, Vol. 98 Issue 1, p163. 12p.
Publication Year :
2002

Abstract

The following result gives a partial answer to a question of R. M. Wilson regarding the existence of group divisible designs of large order. Let k and u be positive integers, 2⩽k⩽u. Then there exists an integer m0=m0(k, u) such that there exists a group divisible design of group type mu with block size k and index one for all integer m⩾m0 if and only if (i) u−1≡0 mod(k−1), (ii) u(u−1)≡0 mod k(k−1). This is a generalization of the well-known result of Chowla, Erdo˝s, and Straus on the existence of transversal designs of large order. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00973165
Volume :
98
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Combinatorial Theory - Series A
Publication Type :
Academic Journal
Accession number :
8501827
Full Text :
https://doi.org/10.1006/jcta.2001.3234