Back to Search Start Over

A High-Resolution Analysis of Process Improvement: Use of Quantile Regression for Wait Time.

Authors :
Choi, Dongseok
Hoffman, Kim A.
Kim, Mi ‐ Ok
McCarty, Dennis
Source :
Health Services Research. Feb2013, Vol. 48 Issue 1, p333-347. 0p. 1 Diagram, 2 Charts, 2 Graphs.
Publication Year :
2013

Abstract

Objective Apply quantile regression for a high-resolution analysis of changes in wait time to treatment and assess its applicability to quality improvement data compared with least-squares regression. Data Source Addiction treatment programs participating in the Network for the Improvement of Addiction Treatment. Methods We used quantile regression to estimate wait time changes at 5, 50, and 95 percent and compared the results with mean trends by least-squares regression. Principal Findings Quantile regression analysis found statistically significant changes in the 5 and 95 percent quantiles of wait time that were not identified using least-squares regression. Conclusions Quantile regression enabled estimating changes specific to different percentiles of the wait time distribution. It provided a high-resolution analysis that was more sensitive to changes in quantiles of the wait time distributions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00179124
Volume :
48
Issue :
1
Database :
Academic Search Index
Journal :
Health Services Research
Publication Type :
Academic Journal
Accession number :
84637514
Full Text :
https://doi.org/10.1111/j.1475-6773.2012.01436.x