Back to Search
Start Over
Pax6 Directly Down-Regulates Pcsk1n Expression Thereby Regulating PC1/3 Dependent Proinsulin Processing.
- Source :
-
PLoS ONE . Oct2012, Vol. 7 Issue 10, Special section p1-11. 11p. - Publication Year :
- 2012
-
Abstract
- Background: Heterozygous paired box6 (Pax6) mutations lead to abnormal glucose metabolism in mice older than 6 months as well as in human beings. Our previous study found that Pax6 deficiency caused down-expression of prohormone convertase 1/3 (Pcsk1), resulting in defective proinsulin processing. As a protein cleaving enzyme, in addition to its expression, the activity of PC1/3 is closely related to its function. We therefore hypothesize that Pax6 mutation alters the activity of PC1/3, which affects proinsulin processing. Methodology/Principal Findings: Using quantitative RT-PCR, western blot and enzyme assay, we found that PC1/3 C-terminal cleavage and its activity were compromised in Pax6 R266Stop mutant mice, and the expression of Pcsk1n, a potent inhibitor of PC1/3, was elevated by Pax6 deficiency in the mutant mice and MIN6 cells. We confirmed the effect of proSAAS, the protein encoded by Pcsk1n, on PC1/3 C-terminal cleavage and its activity by Pcsk1n RNAi in MIN6 cells. Furthermore, by luciferase-reporter analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assay, we revealed that Pax6 bound to Pcsk1n promoter and directly down-regulated its expression. Finally, by co-transfecting Pax6 siRNA with Pcsk1n siRNA, we showed that Pax6 knock-down inhibited proinsulin processing and that this effect could be rescued by proSAAS down-regulation. These findings confirm that Pax6 regulates proinsulin processing partially through proSAAS-mediated PC1/3 processing and activity. Conclusions/Significance: Collectively, the above experiments demonstrate that Pax6 can directly down-regulate Pcsk1n expression, which negatively affects PC1/3 C-terminal cleavage and activity and subsequently participates in proinsulin processing. We identified proSAAS as a novel down-regulated target of Pax6 in the regulation of glucose metabolism. This study also provides a complete molecular mechanism for the Pax6 deficiency-caused diabetes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 7
- Issue :
- 10
- Database :
- Academic Search Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 83523177
- Full Text :
- https://doi.org/10.1371/journal.pone.0046934