Back to Search
Start Over
Neutronic characterization and decay heat calculations in the in-vessel fuel storage facilities for MYRRHA/FASTEF
- Source :
-
Energy Conversion & Management . Dec2012, Vol. 64, p522-529. 8p. - Publication Year :
- 2012
-
Abstract
- Abstract: The main objective of the Central Design Team (CDT) project is to establish an engineering design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) that is the pilot plant of an experimental-scale of both an Accelerator Driven System (ADS) and a Lead Fast Reactor (LFR), based on the MYRRHA reactor concept, planned to be built during the next decade. The MYRRHA reactor concept is devoted to be a multi-purpose irradiation facility aimed at demonstrating the efficient transmutation of long-lived and high radiotoxicity minor actinides, fission products and the associated technology. An important issue regarding the reactor design of the MYRRHA/FASTEF experiment is the In-Vessel Fuel Storage Facilities (IVFSFs), both for fresh and spent fuel, as it might have an impact on the criticality of the overall system that must be quantified. In this work, the neutronic analysis of the in-vessel fuel storage facility and its coupling with the critical core was performed, using the state of the art Monte Carlo program MCNPX 2.6.0 and ORIGEN 2.2 computer code system for calculating the buildup and decay heat of spent fuel. Several parameters were analyzed, like the criticality behavior (namely the K eff), the neutron fluxes and their variations, the fission power production and the radiation damage (the displacements per atom). Finally, also the heat power generated by the fission products decay in the spent fuel was assessed. [Copyright &y& Elsevier]
Details
- Language :
- English
- ISSN :
- 01968904
- Volume :
- 64
- Database :
- Academic Search Index
- Journal :
- Energy Conversion & Management
- Publication Type :
- Academic Journal
- Accession number :
- 83454054
- Full Text :
- https://doi.org/10.1016/j.enconman.2012.05.001