Back to Search Start Over

The Heme Oxygenase 1 Inducer (CoPP) Protects Human Cardiac Stem Cells against Apoptosis through Activation of the Extracellular Signal-regulated Kinase (ERK)/NRF2 Signaling Pathway and Cytokine Release.

Authors :
Chuanxi Cai
Lei Teng
Duc Vu
Jia-Qiang He
Yiru Guo
Qianghong Li
Xian-Liang Tang
Rokosh, Gregg
Bhatnagar, Aruni
Bolli, Roberto
Source :
Journal of Biological Chemistry. 9/28/2012, Vol. 287 Issue 40, p33720-33732. 13p.
Publication Year :
2012

Abstract

Intracoronary delivery of c-kit-positive human cardiac stem cells (hCSCs) is a promising approach to repair the infarcted heart, but it is severely limited by the poor survival of donor cells. Cobalt protoporphyrin (CoPP), a well known heme oxygenase 1 inducer, has been used to promote endogenous CO generation and protect against ischemia/reperfusion injury. Therefore, we determined whether preconditioning hCSCs with CoPP promotes CSC survival. c-kit-positive, lineage-negative hCSCs were isolated from human heart biopsies. Lactate dehydrogenase release assays demonstrated that preconditioning CSCs with CoPP markedly enhanced cell survival after oxidative stress induced byH2O2, concomitant with up-regulation of heme oxygenase 1, COX-2, and anti-apoptotic proteins (BCL2, BCL2-A1, and MCL-1) and increased phosphorylation of NRF2. Apoptotic cytometric assays showed that pretreatment of CSCs with CoPP enhanced the cells' resistance to apoptosis induced by oxidative stress. Conversely, knocking down HO-1, COX-2, or NRF2 by shRNA gene silencing abrogated the cytoprotective effects of CoPP. Further, preconditioning CSCs with CoPP led to a global increase in release of cytokines, such as EGF, FGFs, colony-stimulating factors, and chemokine ligand. Conditioned medium from cells pretreated with CoPP conferred naive CSCs remarkable resistance to apoptosis, demonstrating that cytokines released by preconditioned cells play a key role in the anti-apoptotic effects of CoPP. Preconditioning CSCs with CoPP also induced an increase in the phosphorylation of Erk1/2, which are known to modulate multiple pro-survival genes. These results potentially provide a simple and effective strategy to enhance survival of CSCs after transplantation and, therefore, their efficacy in repairing infarcted myocardium. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
287
Issue :
40
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
82214170
Full Text :
https://doi.org/10.1074/jbc.M112.385542