Back to Search Start Over

Dirac-type characterizations of graphs without long chordless cycles

Authors :
Chvátal, Vašek
Rusu, Irena
Sritharan, R.
Source :
Discrete Mathematics. Sep2002, Vol. 256 Issue 1/2, p445. 4p.
Publication Year :
2002

Abstract

We call a chordless path <f>v1v2…vi</f> simplicial if it does not extend into any chordless path <f>v0v1v2…vivi+1</f>. Trivially, for every positive integer k, a graph contains no chordless cycle of length <f>k+3</f> or more if each of its nonempty induced subgraphs contains a simplicial path with at most k vertices; we prove the converse. The case of <f>k=1</f> is a classic result of Dirac. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
0012365X
Volume :
256
Issue :
1/2
Database :
Academic Search Index
Journal :
Discrete Mathematics
Publication Type :
Academic Journal
Accession number :
7877282