Back to Search
Start Over
Dirac-type characterizations of graphs without long chordless cycles
- Source :
-
Discrete Mathematics . Sep2002, Vol. 256 Issue 1/2, p445. 4p. - Publication Year :
- 2002
-
Abstract
- We call a chordless path <f>v1v2…vi</f> simplicial if it does not extend into any chordless path <f>v0v1v2…vivi+1</f>. Trivially, for every positive integer k, a graph contains no chordless cycle of length <f>k+3</f> or more if each of its nonempty induced subgraphs contains a simplicial path with at most k vertices; we prove the converse. The case of <f>k=1</f> is a classic result of Dirac. [Copyright &y& Elsevier]
- Subjects :
- *GRAPH theory
*PATHS & cycles in graph theory
Subjects
Details
- Language :
- English
- ISSN :
- 0012365X
- Volume :
- 256
- Issue :
- 1/2
- Database :
- Academic Search Index
- Journal :
- Discrete Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 7877282