Back to Search
Start Over
Modeling large cortical networks with growing self-organizing maps
- Source :
-
Neurocomputing . Jun2002, Vol. 44-46, p315. 7p. - Publication Year :
- 2002
-
Abstract
- Self-organizing computational models with specific intracortical connections can explain many features of visual cortex. However, due to their computation and memory requirements, it is difficult to use such detailed models to study large-scale object segmentation and recognition. This paper describes GLISSOM, a method for scaling a small RF-LISSOM model network into a larger one during self-organization, dramatically reducing time and memory needs while obtaining equivalent results. With GLISSOM it should be possible to simulate all of human V1 at the single-column level using existing supercomputers. The scaling equations GLISSOM uses also allow comparison of biological maps and parameters between individuals and species with different brain region sizes. [Copyright &y& Elsevier]
- Subjects :
- *VISUAL cortex
*BIOLOGICAL neural networks
Subjects
Details
- Language :
- English
- ISSN :
- 09252312
- Volume :
- 44-46
- Database :
- Academic Search Index
- Journal :
- Neurocomputing
- Publication Type :
- Academic Journal
- Accession number :
- 7826478
- Full Text :
- https://doi.org/10.1016/S0925-2312(02)00358-2