Back to Search Start Over

Implicit nonlinear discontinuous functional boundary value <f>ϕ</f>-Laplacian problems: extremality results

Authors :
Cabada, Alberto
Heikkilä, Seppo
Source :
Applied Mathematics & Computation. Jul2002, Vol. 129 Issue 2/3, p537. 13p.
Publication Year :
2002

Abstract

This paper is devoted to the study of the following implicit nonlinear discontinuous functional boundary value problem(IP) &lt;fen&gt;&lt;cp type=&quot;lcub&quot; STYLE=&quot;S&quot;&gt;&lt;ar&gt;&lt;r&gt;&lt;c CSPAN=&quot;1&quot; RSPAN=&quot;1&quot; CA=&quot;L&quot; RA=&quot;T&quot;&gt;L0 u(t)=f(t,u,L0 u) for a.e. t∈I=[a,b],&lt;/c&gt;&lt;/r&gt;&lt;r&gt;&lt;c CSPAN=&quot;1&quot; RSPAN=&quot;1&quot; CA=&quot;L&quot; RA=&quot;T&quot;&gt;L1(u)=B1(u,L1(u)),&lt;/c&gt;&lt;/r&gt;&lt;r&gt;&lt;c CSPAN=&quot;1&quot; RSPAN=&quot;1&quot; CA=&quot;L&quot; RA=&quot;T&quot;&gt;0=L2(u(a),u(b)),&lt;/c&gt;&lt;/r&gt;&lt;/ar&gt;&lt;/fen&gt;whereL0 u(t)=−&lt;NU&gt;&lt;rm&gt;d&lt;/rm&gt;&lt;/NU&gt;/&lt;rm&gt;d&lt;/rm&gt;tϕ(t,u(t),u′(t))−g(t,u,u(t),u′(t)),andL1(u)=L1(u(a),u(b),u′(a),u′(b),u).Supposing that there is a lower solution &lt;f&gt;α&lt;/f&gt; and an upper solution &lt;f&gt;β&lt;/f&gt;, such that &lt;f&gt;α&amp;les;β&lt;/f&gt;, the existence of extremal solutions lying between both functions is proved. [Copyright &amp;y&amp; Elsevier]

Details

Language :
English
ISSN :
00963003
Volume :
129
Issue :
2/3
Database :
Academic Search Index
Journal :
Applied Mathematics & Computation
Publication Type :
Academic Journal
Accession number :
7809075
Full Text :
https://doi.org/10.1016/S0096-3003(01)00061-3