Back to Search Start Over

Measurement and modeling of a large-area normal-metal/insulator/superconductor refrigerator with improved cooling.

Authors :
O'Neil, Galen C.
Lowell, Peter J.
Underwood, Jason M.
Ullom, Joel N.
Source :
Physical Review B: Condensed Matter & Materials Physics. Apr2012, Vol. 85 Issue 13, p1-13. 13p.
Publication Year :
2012

Abstract

In a normal-metal/insulator/superconductor (NIS) tunnel junction refrigerator, the normal-metal electrons are cooled and the dissipated power heats the superconducting electrode. This paper presents a review of the mechanisms by which heat leaves the superconductor and introduces overlayer quasiparticle traps for more effective heat sinking. A comprehensive thermal model is presented that accounts for the described physics, including the behavior of athermal phonons generated by both quasiparticle recombination and trapped quasiparticles. We compare the model to measurements of a large-area (>400 μm2) NIS refrigerator with overlayer quasiparticle traps, and demonstrate that the model is in good agreement experiment. The refrigerator IV curve at a bath temperature of 300 mK is consistent with an electron temperature of 82 mK. However, evidence from independent thermometer junctions suggests that the refrigerator junction is creating an athermal electron whose total excitation energy corresponds to a higher temperature than is indicated by the refrigerator IV curve [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10980121
Volume :
85
Issue :
13
Database :
Academic Search Index
Journal :
Physical Review B: Condensed Matter & Materials Physics
Publication Type :
Academic Journal
Accession number :
76745356
Full Text :
https://doi.org/10.1103/PhysRevB.85.134504