Back to Search Start Over

Potassium-channel mutations and cardiac arrhythmias--diagnosis and therapy.

Authors :
Giudicessi, John R.
Ackerman, Michael J.
Source :
Nature Reviews Cardiology. Jun2012, Vol. 9 Issue 6, p319-332. 14p.
Publication Year :
2012

Abstract

The coordinated generation and propagation of action potentials within cardiomyocytes creates the intrinsic electrical stimuli that are responsible for maintaining the electromechanical pump function of the human heart. The synchronous opening and closing of cardiac Na+, Ca2+, and K+ channels corresponds with the activation and inactivation of inward depolarizing (Na+ and Ca2+) and outward repolarizing (K+) currents that underlie the various phases of the cardiac action potential (resting, depolarization, plateau, and repolarization). Inherited mutations in pore-forming α subunits and accessory β subunits of cardiac K+ channels can perturb the atrial and ventricular action potential and cause various cardiac arrhythmia syndromes, including long QT syndrome, short QT syndrome, Brugada syndrome, and familial atrial fibrillation. In this Review, we summarize the current understanding of the molecular and cellular mechanisms that underlie K+-channel-mediated arrhythmia syndromes. We also describe translational advances that have led to the emerging role of genetic testing and genotype-specific therapy in the diagnosis and clinical management of individuals who harbor pathogenic mutations in genes that encode α or β subunits of cardiac K+ channels. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17595002
Volume :
9
Issue :
6
Database :
Academic Search Index
Journal :
Nature Reviews Cardiology
Publication Type :
Academic Journal
Accession number :
76601988
Full Text :
https://doi.org/10.1038/nrcardio.2012.3