Back to Search Start Over

Prediction of modified Mercalli intensity from PGA, PGV, moment magnitude, and epicentral distance using several nonlinear statistical algorithms.

Authors :
Alvarez, Diego
Hurtado, Jorge
Bedoya-Ruíz, Daniel
Source :
Journal of Seismology. Jul2012, Vol. 16 Issue 3, p489-511. 23p.
Publication Year :
2012

Abstract

Despite technological advances in seismic instrumentation, the assessment of the intensity of an earthquake using an observational scale as given, for example, by the modified Mercalli intensity scale is highly useful for practical purposes. In order to link the qualitative numbers extracted from the acceleration record of an earthquake and other instrumental data such as peak ground velocity, epicentral distance, and moment magnitude on the one hand and the modified Mercalli intensity scale on the other, simple statistical regression has been generally employed. In this paper, we will employ three methods of nonlinear regression, namely support vector regression, multilayer perceptrons, and genetic programming in order to find a functional dependence between the instrumental records and the modified Mercalli intensity scale. The proposed methods predict the intensity of an earthquake while dealing with nonlinearity and the noise inherent to the data. The nonlinear regressions with good estimation results have been performed using the 'Did You Feel It?' database of the US Geological Survey and the database of the Center for Engineering Strong Motion Data for the California region. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13834649
Volume :
16
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Seismology
Publication Type :
Academic Journal
Accession number :
76312136
Full Text :
https://doi.org/10.1007/s10950-012-9291-x