Back to Search Start Over

Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2- independent and -dependent mechanisms.

Authors :
Wojtasz, Lukasz
Cloutier, Jeffrey M.
Baumann, Marek
Daniel, Katrin
Varga, János
Fu, Jun
Anastassiadis, Konstantinos
Stewart, A. Francis
Rem(c)nyi, Attila
Turner, James M.A.
Tóth, Attila
Source :
Genes & Development. 5/1/2012, Vol. 26 Issue 9, p10-10. 1p.
Publication Year :
2012

Abstract

Meiotic crossover formation involves the repair of programmed DNA double-strand breaks (DSBs) and synaptonemal complex (SC) formation. Completion of these processes must precede the meiotic divisions in order to avoid chromosome abnormalities in gametes. Enduring key questions in meiosis have been how meiotic progression and crossover formation are coordinated, whether inappropriate asynapsis is monitored, and whether asynapsis elicits prophase arrest via mechanisms that are distinct from the surveillance of unrepaired DNA DSBs. We disrupted the meiosis-specific mouse HORMAD2 (Hop1, Rev7, and Mad2 domain 2) protein, which preferentially associates with unsynapsed chromosome axes. We show that HORMAD2 is required for the accumulation of the checkpoint kinase ATR along unsynapsed axes, but not at DNA DSBs or on DNA DSB-associated chromatin loops. Consistent with the hypothesis that ATR activity on chromatin plays important roles in the quality control of meiotic prophase, HORMAD2 is required for the elimination of the asynaptic Spo11%, but not the asynaptic and DSB repair-defective Dmc1% oocytes. Our observations strongly suggest that HORMAD2-dependent recruitment of ATR to unsynapsed chromosome axes constitutes a mechanism for the surveillance of asynapsis. Thus, we provide convincing evidence for the existence of a distinct asynapsis surveillance mechanism that safeguards the ploidy of the mammalian germline. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08909369
Volume :
26
Issue :
9
Database :
Academic Search Index
Journal :
Genes & Development
Publication Type :
Academic Journal
Accession number :
76125587
Full Text :
https://doi.org/10.1101/gad.187559.112