Back to Search Start Over

China's Rainfall Interannual Predictability: Dependence on the Annual Cycle and Surface Anomalies.

Authors :
Liang, Xin-Zhong
Samel, Arthur N.
Wang, Wei-Chyung
Source :
Journal of Climate. Sep2002, Vol. 15 Issue 17, p2555. 7p. 3 Graphs, 1 Map.
Publication Year :
2002

Abstract

China's rainfall interannual predictability is generally believed to depend upon the accurate representation of its annual cycle as well as teleconnections with planetary surface anomalies, including tropical east Pacific sea surface temperature and Eurasian snow and soil moisture. A suite of general circulation model (GCM) simulations is used to ascertain the existence of these relationships. First, a comparison of thirty 1980-88 Atmospheric Model Intercomparison Project (AMIP) GCM simulations shows no clear correspondence between model skill to reproduce observed rainfall annual cycle and interannual variability. Thus, accurate representation of either component does not ensure the realistic simulation of the other. Second, diagnosis of the 1903-94 and 195097 National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3), ensemble integrations indicates the existence of teleconnections in which spring planetary surface anomalies lead China's summer rainfall variations. These teleconnections, however, are sensitive to initial conditions, which define distinct dynamic regimes during the integration period. In addition, analysis of the NCAR Climate System Model (CSM) 300-yr equilibrium simulation reveals that the teleconnections display decadal variations. These results cast doubt on the traditional physical mechanisms that explain China's rainfall teleconnections and, hence, emphasize the need to incorporate interactions between planetary surface anomalies and specific dynamic regimes. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*RAINFALL
*WEATHER forecasting

Details

Language :
English
ISSN :
08948755
Volume :
15
Issue :
17
Database :
Academic Search Index
Journal :
Journal of Climate
Publication Type :
Academic Journal
Accession number :
7216005
Full Text :
https://doi.org/10.1175/1520-0442(2002)015<2555:CSRIPD>2.0.CO;2