Back to Search Start Over

Mechanics of nanoscale surface deformation in polypropylene-clay nanocomposite

Authors :
Misra, R.D.K.
Yuan, Q.
Venkatsurya, P.K.C.
Source :
Mechanics of Materials. Feb2012, Vol. 45, p103-116. 14p.
Publication Year :
2012

Abstract

Abstract: The study described here is in sequel to our studies on the mechanics of microscale deformation in thermoplastic materials where a perspective of deformation processes occurring over different strain–strain rate regimes was obtained. The specific aim here is to enhance our fundamental understanding from microscale to nanoscale deformation in polymeric material systems containing dispersion of nanoparticles, considering the growing use of polymeric materials as functional materials. A Berkovich nanoindenter was used to induce surface damage using a load of 0.5–1mN and scratch velocity of 1μm/s. The secondary objective is to investigate the commonality in surface deformation behavior between nano- and microscale deformation to reinforce the underlying fundamental principles governing surface deformation. Combining electron microscopy with nanoscale surface deformation experiments enabled us to extend the understanding of microscale deformation to nanoscale deformation. In the intercalated polypropylene-nanoclay system, the susceptibility to surface deformation was significantly reduced because of the shift of von Mises stress from the surface to the sub-surface region, with consequent reduction in the maximum tensile stress induced by the nanoindenter. This conclusion was consistent with electron microscopy observations and theoretical analysis. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01676636
Volume :
45
Database :
Academic Search Index
Journal :
Mechanics of Materials
Publication Type :
Academic Journal
Accession number :
70872111
Full Text :
https://doi.org/10.1016/j.mechmat.2011.10.006