Back to Search Start Over

Influence of H-Bond Strength on Chelate Cooperativity.

Authors :
Hunter, Christopher A.
Misuraca, Maria Cristina
Turega, Simon M.
Source :
Journal of the American Chemical Society. 12/21/2011, Vol. 133 Issue 50, p20416-20425. 10p.
Publication Year :
2011

Abstract

Intermolecular complexes formed between metalloporphyrins and pyridine ligands equipped with multiple H-bond donors and acceptors have been used to measure the free energy contributions due to intramolecular ether-phenol H-bonding in the 24 different supramolecular architectures using chemical double mutant cycles in toluene. The ether-phenol interactions are relatively weak, and there are significant populations of partially bound states where between zero and four intramolecular H-bonds are made in addition to the porphyrin-ligand coordination interaction. The complexes were analyzed as ensembles of partially bound states to determine the effective molarities for the intramolecular interactions by comparison with the corresponding intermolecular ether-phenol H-bonds. The properties of the ether-phenol interactions were compared with phosphonate diester-phenol interactions in a closely related ligand system, which has more powerful H-bond acceptor oxygens positioned at the same location on the ligand framework. This provides a comparison of the properties of weak and strong H-bonds embedded in the same 24 supramolecular architectures. When the product of the intermolecular association constant and the effective molarity KEM > 1, there is a linear increase in the free energy contribution due to H-bonding with log EM, because the intramolecular interactions contribute fully to the stability of the complex. When KEM < 1, the H-bonded state is not significantly populated, and there is no impact on the overall stability of the complex. Intermolecular phosphonate diester-phenol H-bonds are 2 orders of magnitude stronger than ether-phenol H-bonds in toluene, so for the phosphonate diester ligand system, 23 of the 24 supramolecular architectures make intramolecular H-bonds. However, only 8 of these architectures lead to detectable H-bonding in the ether ligand system. The other 15 complexes have a suitable geometry for formation of H-bonds, but the ether-phenol interaction is not strong enough to overcome the reorganization costs associated with making intramolecular contacts, i.e., KEM < 1 for the ether ligands, and KEM > 1 for the phosphonate diester ligands. The values of EM measured for two different types of H-bond acceptor are linearly correlated, which suggests that EM is a property of the supramolecular acrchitecture. However, the absolute value of EM for an intramolecular phosphonate diester H-bond is about 4 times lower than the corresponding value for an intramolecular ether-phenol interaction embedded in the same supramolecular framework, which suggests that there may be some interplay of K and EM. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027863
Volume :
133
Issue :
50
Database :
Academic Search Index
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
70200798
Full Text :
https://doi.org/10.1021/ja208330y