Back to Search Start Over

Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction

Authors :
Tsuda, Takeshi
Wu, Jing
Gao, Erhe
Joyce, Jennifer
Markova, Dessislava
Dong, Hailong
Liu, Ying
Zhang, Hangxiang
Zou, Yaqun
Gao, Feng
Miller, Thomas
Koch, Walter
Ma, Xingliang
Chu, Mon-Li
Source :
Journal of Molecular & Cellular Cardiology. Jan2012, Vol. 52 Issue 1, p273-282. 10p.
Publication Year :
2012

Abstract

Abstract: Remodeling of the cardiac extracellular matrix (ECM) is an integral part of wound healing and ventricular adaptation after myocardial infarction (MI), but the underlying mechanisms remain incompletely understood. Fibulin-2 is an ECM protein upregulated during cardiac development and skin wound healing, yet mice lacking fibulin-2 do not display any identifiable phenotypic abnormalities. To investigate the effects of fibulin-2 deficiency on ECM remodeling after MI, we induced experimental MI by permanent coronary artery ligation in both fibulin-2 null and wild-type mice. Fibulin-2 expression was up-regulated at the infarct border zone of the wild-type mice. Acute myocardial tissue responses after MI, including inflammatory cell infiltration and ECM protein synthesis and deposition in the infarct border zone, were markedly attenuated in the fibulin-2 null mice. However, the fibulin-2 null mice had significantly better survival rate after MI compared to the wild-type mice as a result of less frequent cardiac rupture and preserved left ventricular function. Up-regulation of TGF-β signaling and ECM remodeling after MI were attenuated in both ischemic and non-ischemic myocardium of the fibulin-2 null mice compared to the wild type counterparts. Increase in TGF-β signaling in response to angiotensin II was also lessened in cardiac fibroblasts isolated from the fibulin-2 null mice. The studies provide the first evidence that absence of fibulin-2 results in decreased up-regulation of TGF-β signaling after MI and protects against ventricular dysfunction, suggesting that fibulin-2 may be a potential therapeutic target for attenuating the progression of ventricular remodeling. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00222828
Volume :
52
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Molecular & Cellular Cardiology
Publication Type :
Academic Journal
Accession number :
70026760
Full Text :
https://doi.org/10.1016/j.yjmcc.2011.11.001