Back to Search Start Over

High-pressure structural study of yttrium monochalcogenides from experiment and theory.

Authors :
Vaitheeswaran, G.
Kanchana, V.
Svane, A.
Christensen, N. E.
Olsen, J. Staun
Jørgensen, J.-E.
Gerward, L.
Source :
Physical Review B: Condensed Matter & Materials Physics. May2011, Vol. 83 Issue 18, p184108:1-184108:8. 8p.
Publication Year :
2011

Abstract

High-pressure powder x-ray diffraction experiments using synchrotron radiation are performed on the yttrium monochalcogenides YS, YSe, and YTe up to a maximum pressure of 23 GPa. The ambient NaCl structure is stable throughout the pressure range covered. The bulk moduli are determined to be 93, 82, and 67 GPa for YS, YSe, and YTe, respectively. First-principles total energy calculations are carried out using the full-potential linear muffin-tin orbital method. The calculated and measured lattice constants and bulk moduli are in good agrement. Under applied pressure, the yttrium monochalcogenides are predicted to undergo a structural transition. Assuming that the high-pressure phase corresponds to the CsCl crystal structure, transition pressures of 53, 36, and 14 GPa are found for YS, YSe, and YTe, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10980121
Volume :
83
Issue :
18
Database :
Academic Search Index
Journal :
Physical Review B: Condensed Matter & Materials Physics
Publication Type :
Academic Journal
Accession number :
66837716
Full Text :
https://doi.org/10.1103/PhysRevB.83.184108