Back to Search Start Over

Polyacrylamide coated Milorganite™ and gypsum for controlling sediment and phosphorus loads

Authors :
Mailapalli, Damodhara R.
Thompson, Anita M.
Source :
Agricultural Water Management. Dec2011, Vol. 101 Issue 1, p27-34. 8p.
Publication Year :
2011

Abstract

Abstract: The application of polymer for controlling erosion and the associated nutrient transport has been well documented. However, comparatively less information is available on the effect of polymer application together with soil amendments. In this study, the effect of polyacrylamide (PAM) in combination with surface application of gypsum and Milorganite™ (MILwaukee ORGAnic NITtrogEn) biosolid for reducing sediment and phosphorus transport under laboratory rainfall simulations was investigated. The treatments considered were bare soil, gypsum, Milorganite™, gypsum+Milorganite™, PAM-coated gypsum and PAM-coated Milorganite™. Application rates for gypsum and Milorganite™ were 392kgha−1 (350lb/acre) and 726kgha−1 (650lb/acre), respectively. The PAM was coated on gypsum and Milorganite™ at an application rate of 11.2kgha−1 (10lb/acre) and 22.4kgha−1 (20lb/acre), respectively. Rain simulation experiments were conducted using a rainfall intensity of 6.0cmh−1 for 1h on a 10% slope. Surface runoff was collected continuously from each soil box over 10min intervals and leachate was collected continuously over the 60min simulation. The reduction in runoff or in leachate for all treatments was not significantly different from the bare soil control. The sediment loss for PAM coated Milorganite™ was reduced by 77%, when compared to bare soil. However, the sediment loss was not significantly reduced for any other treatment compared to bare soil. The PAM-coated gypsum was not effective for erosion control in our study, and there appears to be a correlation between effectiveness and prill size. However, the gypsum (coated and uncoated) contributed about half of the dissolved reactive phosphorus (DRP) export (in the runoff) compared to bare soil. The PAM-coated Milorgante™ reduced the DRP and total phosphorus (TP) export to 0.3–0.5 times that of Milorganite™ and to levels similar to bare soil. The decreased sediment and phosphorus export for the PAM-coated Milorganite™ treatment is a signal for a potential management practice for controlling erosion and nutrient transport in fertilized agricultural landscapes. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03783774
Volume :
101
Issue :
1
Database :
Academic Search Index
Journal :
Agricultural Water Management
Publication Type :
Academic Journal
Accession number :
66768546
Full Text :
https://doi.org/10.1016/j.agwat.2011.08.021