Back to Search Start Over

Biosynthesis of artemisinin – revisited.

Authors :
Srivastava, Nishi
Akhila, Anand
Source :
Journal of Plant Interactions. Dec2011, Vol. 6 Issue 4, p265-273. 9p.
Publication Year :
2011

Abstract

Artemisinin is a well-known antimalarial drug isolated from the Artemisia annua plant. The biosynthesis of this well-known molecule has been reinvestigated by using [1-13C]acetate, [2-13C]acetate, and [1,6-13C2]glucose. The 13C peak enrichment in artemisinin was observed in six and nine carbon atoms from [1-13C]acetate and [2-13C]acetate, respectively. The 13C NMR spectra of 13C-enriched artemisinin suggested that the mevalonic acid (MVA) pathway is the predominant route to biosynthesis of this sesquiterpene. On the other hand, the peak enrichment of five carbons of 13C-artemisinin including carbon atoms originating from methyls of dimethylallyl group of geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) was observed from [1,6-13C2]glucose. This suggested that GPP which is supposed to be biosynthesized in plastids travels from plastids to cytosol through the plastidial wall and combines with isopentenyl pyrophosphate (IPP) to form the (E,E)-FPP which finally cyclizes and oxidizes to artemisinin. In this way the DXP pathway also contributes to the biosynthesis of this sesquiterpene. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
17429145
Volume :
6
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Plant Interactions
Publication Type :
Academic Journal
Accession number :
66677698
Full Text :
https://doi.org/10.1080/17429145.2011.570869