Back to Search Start Over

Predicting phenology by integrating ecology, evolution and climate science.

Authors :
Pau, Stephanie
Wolkovich, Elizabeth M.
Cook, Benjamin I.
Davies, T. Jonathan
Kraft, Nathan J. B.
Bolmgren, Kjell
Betancourt, Julio L.
Cleland, Elsa E.
Source :
Global Change Biology. Dec2011, Vol. 17 Issue 12, p3633-3643. 11p. 4 Diagrams, 2 Maps.
Publication Year :
2011

Abstract

Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology - the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13541013
Volume :
17
Issue :
12
Database :
Academic Search Index
Journal :
Global Change Biology
Publication Type :
Academic Journal
Accession number :
66607350
Full Text :
https://doi.org/10.1111/j.1365-2486.2011.02515.x