Back to Search Start Over

Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake.

Authors :
Ryder, Isabelle
Bürgmann, Roland
Pollitz, Fred
Source :
Geophysical Journal International. Nov2011, Vol. 187 Issue 2, p613-630. 18p.
Publication Year :
2011

Abstract

SUMMARY In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 × 1017 Pa s, steady-state viscosity 1 × 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 × 1017 Pa s. The viscosities estimated for the Manyi and Kokoxili areas are consistent with constraints obtained from other earthquakes in the northwest and south central parts of the Tibetan Plateau. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0956540X
Volume :
187
Issue :
2
Database :
Academic Search Index
Journal :
Geophysical Journal International
Publication Type :
Academic Journal
Accession number :
66607312
Full Text :
https://doi.org/10.1111/j.1365-246X.2011.05179.x