Back to Search Start Over

Effective connectivity: Influence, causality and biophysical modeling

Authors :
Valdes-Sosa, Pedro A.
Roebroeck, Alard
Daunizeau, Jean
Friston, Karl
Source :
NeuroImage. Sep2011, Vol. 58 Issue 2, p339-361. 23p.
Publication Year :
2011

Abstract

Abstract: This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
10538119
Volume :
58
Issue :
2
Database :
Academic Search Index
Journal :
NeuroImage
Publication Type :
Academic Journal
Accession number :
64869267
Full Text :
https://doi.org/10.1016/j.neuroimage.2011.03.058