Back to Search Start Over

Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

Authors :
Féret, Jean-Baptiste
François, Christophe
Gitelson, Anatoly
Asner, Gregory P.
Barry, Karen M.
Panigada, Cinzia
Richardson, Andrew D.
Jacquemoud, Stéphane
Source :
Remote Sensing of Environment. Oct2011, Vol. 115 Issue 10, p2742-2750. 9p.
Publication Year :
2011

Abstract

Abstract: We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT-5, to develop statistical relationships between leaf optical and chemical properties, which were applied to experimental data without any readjustment. Four distinct synthetic datasets were tested: two unrealistic, uniform distributions and two normal distributions based on statistical properties drawn from a comprehensive experimental database. Two methods used in remote sensing to retrieve vegetation chemical composition, spectral indices and Partial Least Squares (PLS) regression, were trained both on the synthetic and experimental datasets, and validated against observations. Results are compared to a cross-validation process and model inversion applied to the same observations. They show that synthetic datasets based on normal distributions of actual leaf chemical and structural properties can be used to optimize remotely sensed spectral indices or other retrieval methods for analysis of leaf chemical constituents. This study concludes with the definition of several polynomial relationships to retrieve leaf chlorophyll content, carotenoid content, equivalent water thickness and leaf mass per area using spectral indices, derived from synthetic data and validated on a large variety of leaf types. The straightforward method described here brings the possibility to apply or adapt statistical relationships to any type of leaf. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00344257
Volume :
115
Issue :
10
Database :
Academic Search Index
Journal :
Remote Sensing of Environment
Publication Type :
Academic Journal
Accession number :
63567502
Full Text :
https://doi.org/10.1016/j.rse.2011.06.016