Back to Search Start Over

Ribosomal Protein S6 Kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein.

Authors :
Qi Ma
Sunny Guin
Padhye, Snehal S.
Yong-Qing Zhou
Rui-Wen Zhang
Ming-Hai Wang
Source :
Molecular Cancer. 2011, Vol. 10 Issue 1, p66-80. 15p.
Publication Year :
2011

Abstract

Background: Epithelial to mesenchymal transition (EMT) occurs during cancer cell invasion and malignant metastasis. Features of EMT include spindle-like cell morphology, loss of epithelial cellular markers and gain of mesenchymal phenotype. Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein (MSP) has been implicated in cellular EMT program; however, the major signaling determinant(s) responsible for MSPinduced EMT is unknown. Results: The study presented here demonstrates that RSK2, a downstream signaling protein of the Ras-Erk1/2 pathway, is the principal molecule that links MSP-activated RON signaling to complete EMT. Using MDCK cells expressing RON as a model, a spindle-shape based screen was conducted, which identifies RSK2 among various intracellular proteins as a potential signaling molecule responsible for MSP-induced EMT. MSP stimulation dissociated RSK2 with Erk1/2 and promoted RSK2 nuclear translocation. MSP strongly induced RSK2 phosphorylation in a dose-dependent manner. These effects relied on RON and Erk1/2 phosphorylation, which is significantly potentiated by transforming growth factor (TGF)-β1, an EMT-inducing cytokine. Specific RSK inhibitor SL0101 completely prevented MSP-induced RSK phosphorylation, which results in inhibition of MSP-induced spindle-like morphology and suppression of cell migration associated with EMT. In HT-29 cancer cells that barely express RSK2, forced RSK2 expression results in EMT-like phenotype upon MSP stimulation. Moreover, specific siRNA-mediated silencing of RSK2 but not RSK1 in L3.6pl pancreatic cancer cells significantly inhibited MSP-induced EMT-like phenotype and cell migration. Conclusions: MSP-induced RSK2 activation is a critical determinant linking RON signaling to cellular EMT program. Inhibition of RSK2 activity may provide a therapeutic opportunity for blocking RON-mediated cancer cell migration and subsequent invasion. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14764598
Volume :
10
Issue :
1
Database :
Academic Search Index
Journal :
Molecular Cancer
Publication Type :
Academic Journal
Accession number :
62552030
Full Text :
https://doi.org/10.1186/1476-4598-10-66