Back to Search Start Over

Observations of Open-Ocean Deep Convection in the Labrador Sea from Subsurface Floats.

Authors :
Lavender, Kara L.
Davis, Russ E.
Owens, W. Brechner
Source :
Journal of Physical Oceanography. Feb2002, Vol. 32 Issue 2, p511. 16p.
Publication Year :
2002

Abstract

The occurrence and extent of deep convection in the Labrador Sea in winters 1996/97 and 1997/98 is investigated from measurements of over 200 neutrally buoyant subsurface Profiling Autonomous Lagrangian Circulation Explorer (PALACE) and Sounding Oceanographic Lagrangian Observer (SOLO) floats. In addition to providing drift velocity data and vertical profiles of temperature and salinity, 55 floats are equipped with vertical current meters (VCMs). Time series of vertical velocity (derived from measured pressure and vertical flow past the float) and temperature are obtained from the VCM floats. Mixed layer depths estimated from profile measurements indicate that convection reached depths greater than 1300 m in 1997, but no deeper than 1000 m in 1998. Deep mixed layers were concentrated in the western basin, although a number of deep mixed layers were observed southwest of Cape Farewell and also north of 60°N. The highest variance in vertical velocity and the lowest mean temperatures were found in the western basin, suggesting that this area is the main site of deep convection. Deep mixed layers and large vertical velocities were observed as late as April and May, despite the fact that surface forcing appears to have ceased. Estimates of mean vertical velocity appear to be affected by a float sampling bias, whereby floats preferentially sample convergent regions. The effect of this bias, which is dependent on the float depth within the convective layer, is to sample upward flow in early winter and downward flow in late winter when the convective layer has deepened. A one-dimensional heat balance model is examined, whereby the winter surface heat flux, estimated from temperature profiles, is balanced by the turbulent vertical heat flux associated with deep convection, estimated from time series measurements. The plume-scale vertical heat flux can only account for roughly -80 of -350 W m[sup -2] measured at 400-m depth. The vertical heat flux at longer... [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*OCEAN convection
*OCEANOGRAPHY

Details

Language :
English
ISSN :
00223670
Volume :
32
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Physical Oceanography
Publication Type :
Academic Journal
Accession number :
6102723
Full Text :
https://doi.org/10.1175/1520-0485(2002)032<0511:OOOODC>2.0.CO;2