Back to Search Start Over

Effectiveness of the photochemical reflectance index to track photosynthetic activity over a range of forest tree species and plant water statuses.

Authors :
F. Ripullone
A. R. Rivelli
R. Baraldi
R. Guarini
R. Guerrieri
F. Magnani
J. Peñuelas
S. Raddi
M. Borghetti
Source :
Functional Plant Biology. Mar2011, Vol. 38 Issue 3, p177-186. 10p.
Publication Year :
2011

Abstract

In this study, we investigated the potential of the photochemical resistance index (PRI) to track photosynthetic activity under water stress conditions by measuring PRI, leaf fluorescence, the xanthophyll cycle and photosynthetic activity in different forest tree species subjected to progressive drought. The PRI declined with pre-dawn water potential and a significant relationship between PRI and the xanthophyll de-epoxidation state (DEPS) was observed, although with large interspecific variability in the sensitivity of PRI to changes in DEPS. For single tree species, a strong relationship was observed on either PRI light saturated photosynthesis or PRI maximum photochemical efficiency of PSII (ΔF/Fm′); a larger variability in both relationships was apparent when data from different species were pooled together. However, an improved correlation was shown only in the former relationship by plotting the ΔPRI (dawn PRI minus the midday PRI values). Thus, we conclude that PRI is able to provide a good estimate of maximum CO2assimilation at saturating light and ΔF/Fm′ for single tree species, despite the severe drought conditions applied. PRI should be applied more cautiously when dealing with multispecific forests because of confounding factors such as the strong interspecific differences in the initial value of PRI and in the sensitivity of PRI to changes in DEPS in response to drought. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14454408
Volume :
38
Issue :
3
Database :
Academic Search Index
Journal :
Functional Plant Biology
Publication Type :
Academic Journal
Accession number :
60385895
Full Text :
https://doi.org/10.1071/FP10078