Back to Search Start Over

Assessing the complex architecture of polygenic traits in diverged yeast populations.

Authors :
Cubillos, Francisco A.
Billi, Eleonora
ZÖrgÖ, EnikÖ
Parts, Leopold
Fargier, Patrick
Omholt, Stig
Blomberg, Anders
Warringer, Jonas
Louis, Edward J.
Litti, Gianni
Source :
Molecular Ecology. Apr2011, Vol. 20 Issue 7, p1401-1413. 13p. 2 Diagrams, 4 Graphs.
Publication Year :
2011

Abstract

Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09621083
Volume :
20
Issue :
7
Database :
Academic Search Index
Journal :
Molecular Ecology
Publication Type :
Academic Journal
Accession number :
59469305
Full Text :
https://doi.org/10.1111/j.1365-294X.2011.05005.x