Back to Search
Start Over
Buchsbaum varieties with next to sharp bounds on Castelnuovo-Mumford regularity.
- Source :
-
Proceedings of the American Mathematical Society . Dec2010, Vol. 139 Issue 6, p1909-1914. 6p. - Publication Year :
- 2010
-
Abstract
- This paper is devoted to the study of the next extremal case for a Castelnuovo-type bound $ \mathrm{reg} V \le \lceil (\deg V - 1)/ {\mbox{\rm codim} } V \rceil + 1$. A Buchsbaum variety with the maximal regularity is known to be a divisor on a variety of minimal degree if the degree of the variety is large enough. We show that a Buchsbaum variety satisfying $ \mathrm{reg} V = \lceil (\deg V - 1)/ {\mbox{\rm codim} } V \rceil$ $ \deg V \gg 0$ [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 139
- Issue :
- 6
- Database :
- Academic Search Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 58594991