Back to Search Start Over

Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness.

Authors :
Essl, F.
Dullinger, S.
Plutzar, C.
Willner, W.
Rabitsch, W.
Source :
Journal of Biogeography. Mar2011, Vol. 38 Issue 3, p604-614. 11p. 1 Chart, 4 Graphs, 1 Map.
Publication Year :
2011

Abstract

We evaluate how closely diversity patterns of endemic species of vascular plants, beetles, butterflies, molluscs and spiders are correlated with each other, and to what extent similar environmental requirements or survival in common glacial refugia and comparable dispersal limitations account for their existing congruence. Austria. We calculated pairwise correlations among species numbers of the five taxonomic groups in 1405 cells of a 3′ × 5′ raster ( c. 35 km) using the raw data as well as the residuals of regression models that accounted for: (1) environmental variables, (2) environmental variables and the occurrence of potential refugia during the Last Glacial Maximum, or (3) environmental variables, refugia and spatial filters. Pairwise cross-taxonomic group Spearman's rank correlations in the raw data were significantly positive in most cases, but only moderate (0.3 < ρ < 0.5) to weak (ρ < 0.3) throughout. Correlations were closest between plants and beetles, plants and butterflies, and plants and snails, respectively, whereas the distribution of endemic spiders was largely uncorrelated with those of the other groups. Environmental variables explained only a moderate proportion of the variance in endemic richness patterns, and the response of individual groups to environmental gradients was only partly consistent. The inclusion of refugium locations and the spatial filters increased the goodness of model fit for all five taxonomic groups. Moreover, removing the effects of environmental conditions reduced congruence in endemic richness patterns to a lesser extent than did filtering the influence of refugium locations and spatial autocorrelation, except for spiders, which are probably the least dispersal-limited of the five groups. The moderate to weak congruence of endemic richness patterns clearly limits the usefulness of a surrogacy approach for designating areas for the protection of regional endemics. On the other hand, our results suggest that dispersal limitations still shape the distributions of many endemic plant, snail, beetle and butterfly species, even at the regional scale; that is, survival in shared refugia and subsequent restricted spread retain a detectable signal in existing correlations. Concentrating conservation efforts on well-known Pleistocene refugia hence appears to be a reasonable first step towards a strategy for protecting regional endemics of at least the less mobile invertebrate groups. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03050270
Volume :
38
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Biogeography
Publication Type :
Academic Journal
Accession number :
57770271
Full Text :
https://doi.org/10.1111/j.1365-2699.2010.02425.x