Back to Search Start Over

An injectable composite material containing bone morphogenetic protein-2 shortens the period of distraction osteogenesis in vivo.

Authors :
Eguchi, Yoshitaka
Wakitani, Shigeyuki
Naka, Yoshifumi
Nakamura, Hiroaki
Takaoka, Kunio
Source :
Journal of Orthopaedic Research. Mar2011, Vol. 29 Issue 3, p452-456. 5p.
Publication Year :
2011

Abstract

To investigate new methods that can decrease the duration of bone transport (BT) distraction osteogenesis, we injected composite materials containing recombinant human bone morphogenetic protein-2 (BMP-2) and induced the generation of a callus bridge by rapid segmental transport (4 mm/day) in a rabbit bone defect model. The composite materials consisted of BMP-2 (0, 30, or 100 µg), β-tricalcium phosphate powder (βTCP, 100 mg/animal; particle size, <100 µm), and polyethylene glycol (PEG; 40 mg/animal). A paste of equivalent composition was percutaneously injected at the lengthening and the docking sites after surgery and after BT, respectively. The radiographic, mechanical, and histological examinations 12 weeks post-operative revealed that the generation of bridging callus in the presence and in the absence of BMP-2 was significantly different. The callus mass in the bone defect region was adequately and consistently developed in the presence of 100 µg of BMP (administered for 6 weeks), and the bones were consolidated in 12 weeks. Such an adequate callus formation was not observed in the control animals without BMP-2 treatment. The result of this experimental study suggests the potential application of BMP-2 in accelerating callus formation and in enabling rapid bone transporting, thereby shortening the treatment period for the repair of diaphyseal bone defects by distraction osteogenesis. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:452-456, 2011 [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07360266
Volume :
29
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Orthopaedic Research
Publication Type :
Academic Journal
Accession number :
57509405
Full Text :
https://doi.org/10.1002/jor.21225