Back to Search Start Over

Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study.

Authors :
Kelly, Robert E.
Zhishun Wang
Alexopoulos, George S.
Gunning, Faith M.
Murphy, Christopher F.
Morimoto, Sarah Shizuko
Kanellopoulos, Dora
Zhiru Jia
Lim, Kelvin O.
Hoptman, Matthew J.
Source :
International Journal of Biomedical Imaging. 2010, p1-24. 24p. 1 Color Photograph, 8 Charts, 11 Graphs.
Publication Year :
2010

Abstract

Brain functional connectivity (FC) is often assessed from fMRI data using seed-based methods, such as those of detecting temporal correlation between a predefined region (seed) and all other regions in the brain; or using multivariate methods, such as independent component analysis (ICA). ICA is a useful data-driven tool, but reproducibility issues complicate group inferences based on FC maps derived with ICA. These reproducibility issues can be circumvented with hybrid methods that use information from ICA-derived spatial maps as seeds to produce seed-based FC maps. We report results from five experiments to demonstrate the potential advantages of hybrid ICA-seed-based FC methods, comparing results from regressing fMRI data against task-related a priori time courses, with "back-reconstruction" from a group ICA, and with five hybrid ICA-seed-based FC methods: ROI-based with (1) single-voxel, (2) few-voxel, and (3) many-voxel seed; and dual-regression-based with (4) single ICA map and (5) multiple ICA map seed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16874188
Database :
Academic Search Index
Journal :
International Journal of Biomedical Imaging
Publication Type :
Academic Journal
Accession number :
56438534
Full Text :
https://doi.org/10.1155/2010/868976