Back to Search Start Over

Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase.

Authors :
SHIMING DING
DI XU
QIN SUN
HONGBIN YIN
CHAOSHENG ZHANG
Source :
Environmental Science & Technology. 11/1/2010, Vol. 44 Issue 21, p8169-8174. 6p.
Publication Year :
2010

Abstract

Measurement of dissolved reactive phosphorus (DRP) by the diffusive gradients in thin films (DGT) technique was investigated using a new binding phase. Half-dried amorphous zirconium oxide (with 50 ± 5% of water content) was mixed with acrylamide solution for the preparation of the new binding phase. The resulting binding gel had a high binding capacity (223 μg P cm-2) for phosphate. The solution of NaOH (1 M) was used for elution of phosphate from the gel, and an elution efficiency of 0.95 was obtained. A test of DGT uptake with this gel showed its dependence on temperature, and there was no influence of pH (3 to 10) and ionic strength (10 nM to 0.1 M). Its capacity for DGT response exceeded 100 μg P cm-2, corresponding to a DRP concentration of more than 20 mg L-1 for a 24 h deployment with a standard DGT device at 25 °C, which was at least 50 times of the Fe-oxide gel commonly used in the present DGT technique. Measurements with this high-capacity DGT technique in a laboratory microcosm of homogeneously mixed sediments gave smooth and reproducible mass-depth profiles. This technique was well demonstrated by in situ measurements in algal- and macrophyte-dominated regions of Lake Taihu. The DGT-measured concentrations of DRP were on average 20% and 40% of the DRP concentrations in pore waters, respectively, indicating a partial resupply of the sediments to the pore waters with DRP. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0013936X
Volume :
44
Issue :
21
Database :
Academic Search Index
Journal :
Environmental Science & Technology
Publication Type :
Academic Journal
Accession number :
55094824
Full Text :
https://doi.org/10.1021/es1020873