Back to Search Start Over

Towards multireference equivalents of the G2 and G3 methods.

Authors :
So\lling, Theis I.
Smith, David M.
Radom, Leo
Freitag, Mark A.
Gordon, Mark S.
Source :
Journal of Chemical Physics. 11/15/2001, Vol. 115 Issue 19, p8758. 15p. 15 Charts.
Publication Year :
2001

Abstract

The effect of replacing the standard single-determinant reference wave functions in variants of G2 and G3 theory by multireference (MR) wave functions based on a full-valence complete active space has been investigated. Twelve methods of this type have been introduced and comparisons, based on a slightly reduced G2-1 test set, are made both internally and with the equivalent single-reference methods. We use CASPT2 as the standard MR-MP2 method and MRCl+Q as the higher correlation procedure in these calculations. We find that MR-G2(MP2,SVP), MR-G2(MP2), and MR-G3(MP2) perform comparably with their single-reference analogs, G2(MP2,SVP), G2(MP2), and G3(MP2), with mean absolute deviations (MADs) from the experimental data of 1.41, 1.54, and 1.23 kcal mol&sup-1;, compared with 1.60, 1.59, and 1.19 kcal mol&sup-1;, respectively. The additivity assumptions in the MR-Gn methods have been tested by carrying out MR-G2/MRCI+Q and MR-G3/MRCI+Q calculations, which correspond to large-basis-set MRCI + Q + ZPVE + HLC calculations. These give MADs of 1.84 and 1.58 kcal mol&sup-1;, respectively, i.e., the agreement with experiment is somewhat worse than that obtained with the MR-G2(MP2) and MR-G3(MP2) methods. In a third series of calculations, we have examined pure MP2 and MR-MP2 analogs of the G2 and G3 procedures by carrying out large-basis-set MP2 and CASPT2(+ZPVE+HLC) calculations. The resultant methods, which we denote G2/MP2, G3/MP2, MR-G2/MP2, and MR-G3/MP2, give MADs of 4.19, 3.36, 2.01, and 1.66 kcal mol&sup-1;, respectively. Finally, we have examined the effect of using MCQDPT2 in place of CASPT2 in five of our MR-Gn procedures, and find that there is a small but consistent deterioration in performance. Our calculations suggest that the MR-G3(MP2) and MR-G3/MP2 procedures may be useful in situations where a multireference approach is desirable. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*WAVE functions
*CHEMISTRY

Details

Language :
English
ISSN :
00219606
Volume :
115
Issue :
19
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
5475558
Full Text :
https://doi.org/10.1063/1.1411998