Back to Search Start Over

Regime Transition in Electromechanical Fluid Atomization and Implications to Analyte Ionization for Mass Spectrometric Analysis

Authors :
Forbes, Thomas P.
Degertekin, F. Levent
Fedorov, Andrei G.
Source :
Journal of the American Society for Mass Spectrometry. Nov2010, Vol. 21 Issue 11, p1900-1905. 6p.
Publication Year :
2010

Abstract

The physical processes governing the transition from purely mechanical ejection to electromechanical ejection to electrospraying are investigated through complementary scaling analysis and optical visualization. Experimental characterization and visualization are performed with the ultrasonically-driven array of micromachined ultrasonic electrospray (AMUSE) ion source to decouple the electrical and mechanical fields. A new dimensionless parameter, the Fenn number, is introduced to define a transition between the spray regimes, in terms of its dependence on the characteristic Strouhal number for the ejection process. A fundamental relationship between the Fenn and Strouhal numbers is theoretically derived and confirmed experimentally in spraying liquid electrolytes of different ionic strength subjected to a varying magnitude electric field. This relationship and the basic understanding of the charged droplet generation physics have direct implications on the optimal ionization efficiency and mass spectrometric response for different types of analytes. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
10440305
Volume :
21
Issue :
11
Database :
Academic Search Index
Journal :
Journal of the American Society for Mass Spectrometry
Publication Type :
Academic Journal
Accession number :
54607037
Full Text :
https://doi.org/10.1016/j.jasms.2010.07.007