Back to Search Start Over

Iridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)lr(μ-O2C8H15)]2 and AIEt3: Spectroscopic and Kinetic Evidence for the lrn Species Present and for Nanoparticles as the Fastest Catalyst

Authors :
Alley, William M.
Hamdemir, Isil K.
Qi Wang
Frenkel, Anatoty I.
Long Li
Yang, Judith C.
Menard, Laurent D.
Nuzzo, Ralph G.
Ozkar, Saim
Johnson, Kimberly A.
Finke, Richard G.
Source :
Inorganic Chemistry. 9/6/2010, Vol. 49 Issue 17, p8131-8147. 17p.
Publication Year :
2010

Abstract

Ziegler-type hydrogenation catalysts, those made from a group 8-10 transition metal precatatyst and an AIR3 cocatalyst are often used for large scale industrial polymer hydrogenation; note that Ziegler-type hydrogenation catalysts are not the same as Ziegler-Natta polymerization catalysts. A review of prior studies of Ziegler-type hydrogenation catalysts (Alley et at. J. Mol. Catal A: Chem. 2010, 315, 1-27) reveals that a ∼50 year old problem is identifying the metal species present before, during, and after Ziegler-type hydrogenation catalysis, and which species are the kinetically best, fastest catalysts-that is, which species are the true hydrogenation catalysts. Also of significant interest is whether what we have termed "Ziegler nanodusters" mm present and what their relative catalytic activity is. Reported hemin is the characterization of an Ir Ziegior-type hydrogenation catalyst, a valuable model (ride infra) for the CO-based industrial Ziegler-type hydrogenation catalyst, made from the crystallographically characterized [(1,5-COD)Ir(μ-O2C8H15)]2 pmcatalyst plus AlEt3. Characterization of this Ir model system is accomplished before and after catalysis using a battery of physical methods including Z-contrast scanning transmission electron microscopy (STEM), high resolution (HR)TEM, and X-ray absorption fine structure (XAFS) spectroscopy. Kinetic studies plus Hg(0) poisoning experiments are then employed to probe which species am the fastest catalysts. The main findings hemin are that (i) a combination of the catalyst precursors [(1,5-COD)Ir(μ-O2C8H15)]2 and AlEt3 gives catalytically active solutions containing a broad distribution of Irn species ranging from monometallic Ir complexes to nanometer scale, noncrystalline Irn nanoclusters (up to Ir∼100 by Z-contrast STEM) with the estimated mean Ir species being 0.5-0.7 nm, Ir∼4-15 clusters considering the similar, but not identical results from the different analytical methods; furthermore, (i) the mean Irn species are practically the same regardless of the Al/Ir ratio employed, suggesting that the observed changes in catalytic activity at different Al/Ir ratios am primarily the result of changes in the form or function of the Al-derived component (and not due to significant AlEt3-induced changes in initial Irn nuclearity). However (iii), during hydrogenation, a shift in the population of Ir species toward roughly 1.0-1.6 nm, fcc Ir(0)∼40-150, Ziegler nanoclusters occurs with, significantly, (iv) a concomitant increase in catalytic activity. Importantly, and although catalysis by discrete subnanometer Ir species is not ruled out by this study, (v) the increases in activity with increased nanociuster size, plus Hg(0) poisoning studies, provide the best evidence to date that the approximately 1.0-1.6 nm, fcc Ir(0)∼40-150, heterogeneous Ziegier nanoclusters are the fastest catalysts in this industrially related catalytic hydrogenation system (and in the simplest, Ockham's Razor interpretation of the data). In addition, (vi) Ziegler nanoclusters are confirmed to be an unusual, hydrocarbon-soluble, highly coordinatively unsaturated, Lewis-acid containing, and highly catalytically active type of nanoclusters for use in other catalytic applications and other areas. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00201669
Volume :
49
Issue :
17
Database :
Academic Search Index
Journal :
Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
54071712
Full Text :
https://doi.org/10.1021/ic101237c