Back to Search Start Over

Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes.

Authors :
Marcorelles, Pascale
Laquerrière, Annie
Adde-Michel, Christine
Marret, Stéphane
Saugier-Veber, Pascale
Beldjord, Chérif
Friocourt, Gaëlle
Source :
Acta Neuropathologica. Oct2010, Vol. 120 Issue 4, p503-515. 13p. 3 Color Photographs, 4 Charts, 1 Graph.
Publication Year :
2010

Abstract

During corticogenesis, neurons adopt different migration pathways to reach their final position. The precursors of pyramidal neurons migrate radially, whereas most of the GABA-containing interneurons are generated in the ventral telencephalon and migrate tangentially into the neocortex. Then, they use a radial migration mode to establish themselves in an inside-out manner in the neocortex, similarly to pyramidal neurons. In humans, the most severe defects in radial migration result in lissencephaly. Lately, a few studies suggested that lissencephaly was also associated with tangential neuronal migration deficits. In the present report, we investigated potential anomalies of this migration mode in three agyric/pachygyric syndromes due to defects in the LIS1, DCX and ARX genes. Immunohistochemistry was performed on paraffin-embedded supra- and infratentorial structures using calretinin, calbindin and parvalbumin antisera. The results were compared with age-matched control brain tissue. In the Miller–Dieker syndrome, GABAergic neurons were found both in upper layers of the cortex and in heterotopic positions in the intermediate zone and in ganglionic eminences. In the DCX mutant brain, few interneurons were dispersed in the cortical plate, with a massive accumulation in the intermediate zone and subventricular zone as well as in the ganglionic eminences. In the ARX-mutated brain, the cortical plate contained almost exclusively pyramidal cells and was devoid of interneurons. The ganglionic eminences and basal ganglia were poorly cellular, suggesting an interneuron production and/or differentiation defect. These data argue for different mechanisms of telencephalic tangential migration impairment in these three agyric/pachygyric syndromes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00016322
Volume :
120
Issue :
4
Database :
Academic Search Index
Journal :
Acta Neuropathologica
Publication Type :
Academic Journal
Accession number :
52926248
Full Text :
https://doi.org/10.1007/s00401-010-0692-z