Back to Search Start Over

The Effect of Hardness on Eddy Current Residual Stress Profiling in Shot-Peened Nickel Alloys.

Authors :
Abu-Nabah, Bassam
Hassan, Waled
Ryan, Daniel
Blodgett, Mark
Nagy, Peter
Source :
Journal of Nondestructive Evaluation. Sep2010, Vol. 29 Issue 3, p143-153. 11p.
Publication Year :
2010

Abstract

Recent research results indicate that eddy current conductivity measurements can be exploited for nondestructive evaluation of subsurface residual stresses in surface-treated nickel-base superalloy components. According to this approach, first the depth-dependent electric conductivity profile is calculated from the measured frequency-dependent apparent eddy current conductivity spectrum. Then, the residual stress depth profile is calculated from the conductivity profile based on the piezoresistivity coefficient of the material, which is determined separately from calibration measurements using known external applied stresses. This paper presents new results that indicate that in some popular nickel-base superalloys the relationship between the electric conductivity profile and the sought residual stress profile is more tenuous than previously thought. It is shown that in delta-processed IN718 the relationship is very sensitive to the state of precipitation hardening and, if left uncorrected, could render the eddy current technique unsuitable for residual stress profiling in components of 36 HRC or harder, i.e., in most critical engine applications. The presented experimental results show that the observed dramatic change in the eddy current response of hardened IN718 to surface treatment is caused by very fine nanometer-scale features of the microstructure, such as γ′ and γ″ precipitates, rather than micrometer-scale features, such as changing grain size or δ phase and carbide precipitates. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01959298
Volume :
29
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Nondestructive Evaluation
Publication Type :
Academic Journal
Accession number :
52814736
Full Text :
https://doi.org/10.1007/s10921-010-0072-6