Back to Search
Start Over
Further delineation of hydrophobic binding sites in dopamine D2/D3 receptors for N-4 substituents on the piperazine ring of the hybrid template 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol
- Source :
-
Bioorganic & Medicinal Chemistry . Aug2010, Vol. 18 Issue 15, p5661-5674. 14p. - Publication Year :
- 2010
-
Abstract
- Abstract: Here we report a structure–activity relationship (SAR) study of analogues of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol. Our SAR is focused on introduction of various substitutions in the piperazine ring of the hybrid template. The goal behind this study is to delineate the nature of the binding pocket for N-aryl substitution in the piperazine ring by observing the effect of various hydrophobic and other heteroaromatic substitutions on binding affinity (K i), as measured with tritiated spiperone and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed with the GTPγS binding assay. Compound 8d was the most selective for the D3 receptor in the spiperone binding assay. An interesting similarity in binding affinity was observed between isoquinoline derivative D-301 and the 2-substituted pyridine derivative 8d, suggesting the importance of relative spatial relationships between the N-atom of the ligand and the molecular determinants of the binding pocket in D2/D3 receptors. Functional activity assays demonstrated high potency and selectivity of (+)-8a and (−)-28b (D2/D3 (ratio of EC50): 105 and 202, respectively) for the D3 receptor and both compounds were more selective compared to the reference drug ropinirole (D2/D3 (ratio of EC50): 29.5). [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09680896
- Volume :
- 18
- Issue :
- 15
- Database :
- Academic Search Index
- Journal :
- Bioorganic & Medicinal Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 52804102
- Full Text :
- https://doi.org/10.1016/j.bmc.2010.06.025