Back to Search
Start Over
A new basis set for molecular bending degrees of freedom.
- Source :
-
Journal of Chemical Physics . 7/21/2010, Vol. 133 Issue 3, p034107. 10p. 7 Graphs. - Publication Year :
- 2010
-
Abstract
- We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range θ∈[0:π]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH++, HCCH+, and HCCS are presented. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 133
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 52351802
- Full Text :
- https://doi.org/10.1063/1.3462244