Back to Search
Start Over
Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes
- Source :
-
BBA - Molecular Cell Research . Aug2010, Vol. 1803 Issue 8, p960-967. 8p. - Publication Year :
- 2010
-
Abstract
- Abstract: PGC-1α is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1α expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1α participates in the regulation of muscle mass. PGC-1α gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1α in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1α expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1α protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1α transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1α regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1α expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1α were also decreased in muscles of CnAα−/− and CnAβ−/− mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1α expression. These findings demonstrate that Cn activity is a major determinant of PGC-1α expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass. [Copyright &y& Elsevier]
Details
- Language :
- English
- ISSN :
- 01674889
- Volume :
- 1803
- Issue :
- 8
- Database :
- Academic Search Index
- Journal :
- BBA - Molecular Cell Research
- Publication Type :
- Academic Journal
- Accession number :
- 51434980
- Full Text :
- https://doi.org/10.1016/j.bbamcr.2010.03.019