Back to Search Start Over

Probabilistic Topic Models for Learning Terminological Ontologies.

Authors :
Wei, Wang
Barnaghi, Payam
Bargiela, Andrzej
Source :
IEEE Transactions on Knowledge & Data Engineering. Jul2010, Vol. 22 Issue 7, p1028-1040. 13p.
Publication Year :
2010

Abstract

Probabilistic topic models were originally developed and utilized for document modeling and topic extraction in Information Retrieval. In this paper, we describe a new approach for automatic learning of terminological ontologies from text corpus based on such models. In our approach, topic models are used as efficient dimension reduction techniques, which are able to capture semantic relationships between word-topic and topic-document interpreted in terms of probability distributions. We propose two algorithms for learning terminological ontologies using the principle of topic relationship and exploiting information theory with the probabilistic topic models learned. Experiments with different model parameters were conducted and learned ontology statements were evaluated by the domain experts. We have also compared the results of our method with two existing concept hierarchy learning methods on the same data set. The study shows that our method outperforms other methods in terms of recall and precision measures. The precision level of the learned ontology is sufficient for it to be deployed for the purpose of browsing, navigation, and information search and retrieval in digital libraries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10414347
Volume :
22
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Knowledge & Data Engineering
Publication Type :
Academic Journal
Accession number :
51119219
Full Text :
https://doi.org/10.1109/TKDE.2009.122