Back to Search Start Over

Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality

Authors :
Martins, Albino
Duarte, Ana Rita C.
Faria, Susana
Marques, Alexandra P.
Reis, Rui L.
Neves, Nuno M.
Source :
Biomaterials. Aug2010, Vol. 31 Issue 22, p5875-5885. 11p.
Publication Year :
2010

Abstract

Abstract: Electrospun structures were proposed as scaffolds owing to their morphological and structural similarities with the extracellular matrix found in many native tissues. These fibrous structures were also proposed as drug release systems by exploiting the direct dependence of the release rate of a drug on the surface area. An osteogenic differentiation factor, dexamethasone (DEX), was incorporated into electrospun polycaprolactone (PCL) nanofibers at different concentrations (5, 10, 15 and 20 wt.% polymer), in a single-step process. The DEX incorporated into the polymeric carrier is in amorphous state, as determined by DSC, and does not influence the typical nanofibers morphology. In vitro drug release studies demonstrated that the dexamethasone release was sustained over a period of 15 days. The bioactivity of the released dexamethasone was assessed by cultivating human bone marrow mesenchymal stem cells (hBMSCs) on 15 wt.% DEX-loaded PCL NFMs, under dexamethasone-absent osteogenic differentiation medium formulation. An increased concentration of alkaline phosphatase and deposition of a mineralized matrix was observed. Phenotypic and genotypic expression of osteoblastic-specific markers corroborates the osteogenic activity of the loaded growth/differentiation factor. Overall data suggests that the electrospun biodegradable nanofibers can be used as carriers for the sustained release of growth/differentiation factors relevant for bone tissue engineering strategies. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01429612
Volume :
31
Issue :
22
Database :
Academic Search Index
Journal :
Biomaterials
Publication Type :
Academic Journal
Accession number :
50977561
Full Text :
https://doi.org/10.1016/j.biomaterials.2010.04.010