Back to Search Start Over

Toward a Better Modeling of Surface Emissivity to Improve AMSU Data Assimilation Over Antarctica.

Authors :
Guedj, Stephanie
Karbou, Fatima
Rabier, Florence
Bouchard, Aurelie
Source :
IEEE Transactions on Geoscience & Remote Sensing. Apr2010 Part 2, Vol. 48 Issue 4, p1976-1985. 10p.
Publication Year :
2010

Abstract

This work is in direct line with the Concordiasi international project. It aims to better constrain atmospheric analyses by improving the assimilation of low-level Advanced Microwave Sounding Unit (AMSU)-A and AMSU-B microwave observations over Antarctica. So far, a very small amount of available AMSU observations is effectively assimilated over Antarctica. To assimilate more observations, different issues have to be dealt with. In this work, the surface emissivity issue over Antarctica is examined. In a first step, a thorough review of the use of a specular assumption to calculate emissivity from AMSU-A measurements has been undertaken. The effect of five different assumptions about the surface on retrieved AMSU emissivities has then been evaluated using a one-year database: specular, Lambertian, and three intermediate assumptions. Simulations of brightness temperatures at AMSU sounding frequencies have been produced using a radiative transfer model. The emissivities obtained using the five assumptions have been found very useful in improving these simulations. The most successful schemes are found to be the Lambertian scheme during the winter season and a specular or an intermediate scheme (50% specular, 50% Lambertian) during Antarctica's short summer. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01962892
Volume :
48
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
50915819
Full Text :
https://doi.org/10.1109/TGRS.2009.2036254