Back to Search Start Over

Crystal structure of bacterioferritin from Rhodobacter sphaeroides

Authors :
Nam, Ki Hyun
Xu, Yongbin
Piao, Shunfu
Priyadarshi, Amit
Lee, Eun Hye
Kim, Hye-Yeon
Jeon, Young Ho
Ha, Nam-Chul
Hwang, Kwang Yeon
Source :
Biochemical & Biophysical Research Communications. Jan2010, Vol. 391 Issue 1, p990-994. 5p.
Publication Year :
2010

Abstract

Abstract: Iron is essential for the survival of organisms, but either excess or deficient levels of iron induce oxidative stress, thereby causing cell damage. As a result, iron regulation is essential for proper cell growth and proliferation in most organisms. Bacterioferritin is a ferritin-like family protein that contains a heme molecule and a ferroxidase site at the di-iron center. This protein plays a primary role in intracellular iron storage for iron homeostasis, as well as in the maintenance of iron in a soluble and non-toxic form. Although several bacterioferritin structures have been determined, no structural studies have successfully elucidated the molecular function of the heme molecule and the ferroxidase center. Here, we report the crystal structure of bacterioferritin from Rhodobacter sphaeroides. This protein exists in a roughly spherical configuration via the assembly of 24 subunits. We describe the oligomeric arrangement, ferroxidase center and heme-binding site based on this structure. The protein contains a single iron-binding configuration in the ferroxidase center, which allows for the release of iron by His130 when the protein is in the intermediate state. The heme molecule in RsBfr is stabilized by shifting of the van der Waals interaction center between the porphyrin of the heme and Trp26. We anticipate that further structural analysis will provide a more complete understanding of the molecular mechanisms of members of the ferritin-like family. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
0006291X
Volume :
391
Issue :
1
Database :
Academic Search Index
Journal :
Biochemical & Biophysical Research Communications
Publication Type :
Academic Journal
Accession number :
47380738
Full Text :
https://doi.org/10.1016/j.bbrc.2009.12.003