Back to Search Start Over

Ab initio studies of π-water tetramer complexes: Evolution of optimal structures, binding energies, and vibrational spectra of π-(H[sub 2]O)[sub n] (n=1-4) complexes.

Authors :
Tarakeshwar, P.
Kim, Kwang S.
Djafari, S.
Buchhold, K.
Reimann, B.
Barth, H.-D.
Brutschy, B.
Source :
Journal of Chemical Physics. 3/1/2001, Vol. 114 Issue 9. 1 Diagram, 4 Charts, 4 Graphs.
Publication Year :
2001

Abstract

The optimal structures, binding energies, and harmonic vibrational frequencies of clusters containing a substituted benzene molecule microsolvated by four water molecules, termed as π-(water tetramer) clusters (π: p-difluorobenzene, fluorobenzene, benzene, toluene) have been evaluated at the second order perturbation level of theory (MP2) using both the 6-31+G* and aug-cc-pVDZ basis sets. In sharp contrast to the complexes of smaller water clusters with these π systems, wherein the water subcluster is most strongly bound to toluene, the water tetramer is most strongly bound to fluorobenzene. This exceptionally high binding energy results from both a π···OH H-bond and a competing σ F···OH bond between the water tetramer moiety and the aromatic molecule. The magnitudes of the many-body energy terms and their contribution to the binding energies of these π-(water tetramer) systems indicates that the contributions of three- and higher-order terms are much smaller when compared to the neutral water clusters. The two-body terms associated with the π- and σ-type of interaction indicates that in both the fluorobenzene and p-difluorobenzene complexes, the increase in the size of the water cluster enhances the π-H-bonding interaction and weakens the σ F···H interaction. This observation is in consonance with the calculated and experimentally observed redshifts of the OH vibrational frequencies. Thus, with an increase in the size of a water cluster bound to the fluorinated π system, there is a lowering of the redshift induced by the σ F···H interaction and an increase in the redshift due to the π-H interaction. The calculated redshift of the π H-bonded OH mode is very much dependent on the basis set, with larger basis sets yielding shifts which are in better agreement with the experimentally determined shifts. © 2001 American ... [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
114
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
4713995
Full Text :
https://doi.org/10.1063/1.1343903