Back to Search Start Over

In situ accelerated degradation of gas diffusion layer in proton exchange membrane fuel cell: Part I: Effect of elevated temperature and flow rate

Authors :
Wu, Jinfeng
Martin, Jonathan J.
Orfino, Francesco P.
Wang, Haijiang
Legzdins, Colleen
Yuan, Xiao-Zi
Sun, Colin
Source :
Journal of Power Sources. Apr2010, Vol. 195 Issue 7, p1888-1894. 7p.
Publication Year :
2010

Abstract

Abstract: Past studies have shown that both the substrate and microporous layer of the gas diffusion layer (GDL) significantly affect water balance and performance of a proton exchange membrane (PEM) fuel cell. However, little effort has been made to investigate the importance of GDL properties on the durability of PEM fuel cells. In this study, the in situ degradation behaviour of a commercial GDL carbon fiber paper with MPL was investigated under a combination of elevated temperature and elevated flow rate conditions. To avoid the possible impact of the catalyst layer during degradation test, different barriers without catalyst were utilized individually to isolate the anode and cathode GDLs. Three different barriers were evaluated on their ability to isolate GDL degradation and their similarity to a fuel cell environment, and finally a novel Nafion/MPL/polyimide barrier was chosen. Characterization of the degraded GDL samples was conducted through the use of various diagnostic methods, including through-plane electrical resistivity measurements, mercury porosimetry, relative humidity sensitivity, and single-cell performance curves. Noticeable decreases in electrical resistivity and the hydrophobic properties were detected for the degraded GDL samples. The experimental results suggested that material loss plays an important role in GDL degradation mechanisms, while excessive mechanical stress prior to degradation weakens the GDL structure and changes its physical property, which consequently accelerates the material loss of the GDL during aging. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03787753
Volume :
195
Issue :
7
Database :
Academic Search Index
Journal :
Journal of Power Sources
Publication Type :
Academic Journal
Accession number :
46749935
Full Text :
https://doi.org/10.1016/j.jpowsour.2009.10.022