Back to Search Start Over

SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.

Authors :
Bardhan, Jaydeep
Sanghyun Park
Makowski, Lee
Source :
Journal of Applied Crystallography. Oct2009, Vol. 42 Issue 5, p932-943. 12p. 2 Diagrams, 8 Graphs.
Publication Year :
2009

Abstract

This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218898
Volume :
42
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Applied Crystallography
Publication Type :
Academic Journal
Accession number :
44995037
Full Text :
https://doi.org/10.1107/S0021889809032919