Back to Search Start Over

Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans

Authors :
Jampeetong, Arunothai
Brix, Hans
Source :
Aquatic Botany. Oct2009, Vol. 91 Issue 3, p181-186. 6p.
Publication Year :
2009

Abstract

Abstract: The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150mM. The relative growth rates were high (ca. 0.3d−1) at salinities up to 50mM and decreased to less than 0.2d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1μmolg−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (F v/F m) of S. natans remained unchanged at 50mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03043770
Volume :
91
Issue :
3
Database :
Academic Search Index
Journal :
Aquatic Botany
Publication Type :
Academic Journal
Accession number :
44012657
Full Text :
https://doi.org/10.1016/j.aquabot.2009.05.003