Back to Search Start Over

Statistical Hough Transform.

Authors :
Dahyot, Rozenn
Source :
IEEE Transactions on Pattern Analysis & Machine Intelligence. Aug2009, Vol. 31 Issue 8, p1502-1509. 8p. 6 Diagrams, 1 Chart.
Publication Year :
2009

Abstract

The Standard Hough Transform is a popular method in image processing and is traditionally estimated using histograms. Densities modeled with histograms in high dimensional space and/or with few observations, can be very sparse and highly demanding in memory. In this paper, we propose first to extend the formulation to continuous kernel estimates. Second, when dependencies in between variables are well taken into account, the estimated density is also robust to noise and insensitive to the choice of the origin of the spatial coordinates. Finally, our new statistical framework is unsupervised (all needed parameters are automatically estimated) and flexible (priors can easily be attached to the observations). We show experimentally that our new modeling encodes better the alignment content of images. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01628828
Volume :
31
Issue :
8
Database :
Academic Search Index
Journal :
IEEE Transactions on Pattern Analysis & Machine Intelligence
Publication Type :
Academic Journal
Accession number :
43490533
Full Text :
https://doi.org/10.1109/TPAMI.2008.288