Back to Search Start Over

Investigation and simulation on the dynamic shock response performance of packaged high-g MEMS accelerometer versus the impurity concentration of the piezoresistor

Authors :
Yang, Zunxian
Huang, Yun
Li, Xinxin
Chen, Guonan
Source :
Microelectronics Reliability. May2009, Vol. 49 Issue 5, p510-516. 7p.
Publication Year :
2009

Abstract

Abstract: To enhance the stability of packaged high-g MEMS accelerometers with double cantilevers positioned asymmetrically, the dynamic shock responses of components versus impurity concentration of piezoresistors at various working temperatures have been probed by using Finite Element Method (FEM). Results indicate that the dynamic output responses of component are actually the superposition of the forced vibrations with dynamic shock and those of cantilevers in their eigenfrequency. The dynamic responses of components are sensitive to the working temperature. With the increase of working temperature, the inherent frequency vibrations of the cantilevers are depressed gradually. Moreover, the larger the difference between the working temperature and reference temperature, the more obvious the impurity effect of piezoresistors is. The difference between the peak output voltage of response under 1×1018 cm−3 and that under 1×1021 cm−3 varies greatly from −2.2146mV at T =0°C to 8.6609mV at T =100°C, of course, is partly due to the characteristic variation of damping media under various working temperatures. Therefore, to improve the stability of component and further weaken the impurity concentration effect and the temperature effect of piezoresistors on the performance of components, it is necessary to increase the impurity concentration of piezoresistors and keep the components working at relatively lower temperature only if the electro-performance of component is satisfied. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
00262714
Volume :
49
Issue :
5
Database :
Academic Search Index
Journal :
Microelectronics Reliability
Publication Type :
Academic Journal
Accession number :
39355845
Full Text :
https://doi.org/10.1016/j.microrel.2009.02.018